Multicoretests — Parallel Testing Libraries for OCaml 5.0

Jan Midtgaard

Olivier Nicole

Nicolas Osborne

Tarides

1 Introduction

Parallel and concurrent code is notoriously hard to test
because of the involved non-determinism, yet it is facing
OCaml programmers with the coming OCaml 5.0 multicore
release. We present two related testing libraries to improve
upon the situation:

« Lin — alibrary to test for sequential consistency
+ STM - a state-machine testing library

Both libraries build on QCheck [18], a black-box, property-
based testing library in the style of QuickCheck [5]. The two
libraries represent different trade-offs between required user
effort and provided guarantees and thereby supplement each
other.

In this document we will use OCaml’s Hashtbl module as
a running example.

2 The Lin library

The Lin library performs a sequence of random operations in
parallel, records the results, and checks whether the observed
results are linearizable by reconciling them with a sequential
execution. The library offers an embedded, combinator DSL
to describe signatures succinctly. As an example, the required
specification to test (parts of) the Hashtb1l module is given in
fig. 1.

The first line indicates the type of the system under test
(SUT). In the above case we intend to test Hashtbls with char
keys and int values. The bindings init and cleanup allow
for setting up and tearing down the SUT. The api then con-
tains a list of type signature descriptions using combinators
in the style of Ctypes [23]. Different combinators unit, bool,
int, list, option, returning, returning_or_exc, ... allow
for a concise type signature description.

From the signature description the Lin library will iterate a
number of test instances. Each test instance consists of a “se-
quential prefix” of calls to the specified operations, followed
by a spawn of two parallel Domains that each call a sequence
of operations.

For each test instance Lin chooses the individual opera-
tions arbitrarily and records the result received from each
operation. The framework will then perform a search for a se-
quential interleaving of the same calls, and succeed if it finds
one. Since Hashtbls are not safe for parallelism, the output
produces the following:

Results incompatible with sequential execution

|
Hashtbl.add t '@' 4 : ()

Hashtbl.add t '.' 3 : () Hashtbl.clear t : ()

Hashtbl.length t : 2

This describes that in one parallel execution, Lin received
the response 2 from Hashtbl.length, despite having just ex-
ecuted Hashtbl.clear. It this case, it is not possible to inter-
leave Hashtbl.add t '.' 3 with these two calls to explain
this observed behaviour.

Underneath the hood, Lin does its best to schedule the two
parallel Domains on top of each other. It also repeats each
test instance, to increase the chance of triggering an error,
and it fails if just one of the repetitions fail to find a sequen-
tial interleaving. Finally, upon finding an error it reduces the
involved operation sequences to a local minimum, which is
what is printed above.

Lin is phrased as an OCaml functor, Lin_domain.Make.
The module resulting from Lin_domain.Make(HashtblSig)
contains a binding 1in_test that can perform the above lin-
earization test over Domains, the basic unit of parallelism
coming in OCaml 5.0. An alternative Lin mode works over
Thread for testing concurrent but non-overlapping execu-
tions. This mode thus mimicks the above functionality by re-
placing Domain.spawn and Domain.join with Thread.create
and Thread. join, respectively.

3 The STM library

Like Lin the STM library also performs a sequence of random
operations in parallel and records the results. In contrast to
Lin, STM then checks whether the observed results are lin-
earizable by reconciling them with a sequential execution of
a model description.

The model expresses the intended meaning of each tested
operation. As such, the required STM user input is longer com-
pared to that of Lin. The corresponding code to describe a
Hashtbl test using STM is given in fig. 2.

Again this requires a description of the system under test,
sut. In addition STM requires a type cmd for describing the
tested operations. The hooks init_sut and cleanup match
init and cleanup from Lin, respectively.

module HashtblSig =

struct
type t = (char, int) Hashtbl.t
let init () = Hashtbl.create ~random:false 42
let cleanup _ = ()
open Lin
let a,b = char_printable,nat_small
let api =
[val_ "Hashtbl.clear" Hashtbl.clear (t @->
val_ "Hashtbl.add" Hashtbl.add (t @->
val_ "Hashtbl.remove" Hashtbl.remove (t @->
val_ "Hashtbl.find" Hashtbl.find (t @->
val_ "Hashtbl.replace" Hashtbl.replace (t @->
val_ "Hashtbl.mem" Hashtbl.mem (t @->
val_ "Hashtbl.length" Hashtbl.length (t @->
end

returning unit);

@-> b @-> returning unit);
@-> returning unit);

®-> returning_or_exc b);
@-> b @-> returning unit);
@-> returning bool);
returning int); 1

a
a
a
a
a

Figure 1: Specification of selected Hashtbl functions for testing using Lin.

A distinguishing feature is type state = (char * int)
list describing with a pure association list the internal state
of a hashtable. next_state is a simple state transition func-
tion describing how the state changes across each cmd. For
example, Add (k,v) appends the key-value pair onto the as-
sociation list.

arb_cmd is a generator of cmds, taking state as a pa-
rameter. This allows for state-dependent cmd generation,
which we use to increase the chance of producing a Remove
'c', Find 'c', ... following an Add 'c'. Internally arb_cmd
uses combinators Gen.return, Gen.map, and Gen.map2 from
QCheck to generate one of 7 different operations. For ex-
ample,Gen.map (fun k -> Mem k) char creates a Mem com-
mand with the result obtained from the char generator.
arb_cmd further uses a derived printer show_cmd to be able
to print counterexamples.

run executes the tested cmd over the SUT and wraps the
result up in a result type res offered by STM. Combinators
unit, bool, int, ... allow to annotate the result with the ex-
pected type. postcond then expresses a post-condition by
matching the received res, for a given cmd with the corre-
sponding answer from the model description. For example,
this compares the Boolean result r from Hashtbl.mem with
the result from List.mem_assoc. Similarly precond expresses
a cmd pre-condition.

STM is also phrased as an OCaml functor. The module re-
sulting from STM_domain.Make(HashtblModel) thus includes
a binding agree_test for running sequential tests compar-
ing the SUT behaviour to the given model. Another bind-
ing agree_test_par instead runs parallel tests that make a
similar comparison over a sequential prefix and two parallel
Domains, this time also searching for a sequential interleav-
ing of cmds. For example, one execution of agree_test_par
produced the following output. Note how no interleaving of
Remove from the first parallel cmd sequence can make the as-
sociation list model return -1 from Length:

Results incompatible with linearized model

(Add ('1', 5)) : O)
|
| |
(Remove '1') : () Clear : ()
Length : -1

4 Status

Both libraries are open source and available for download on
GitHub from https://github.com/jmid/multicoretests.
As the APIs are still unstable and under development, we
have not made a public release yet. Interested users can nev-
ertheless easily install the libraries with opam.

During development we have used examples such as
Hashtbl to confirm that the approach indeed works as in-
tended. The behaviour is continuously confirmed by run-
ning GitHub Actions of the latest trunk compiler. As fur-
ther testament to the usability of the approach, we have used
the libraries to test parts of OCaml’s Stdlib, as well as the
Domainslib and lockfree libraries. In doing so, we have
been able to find and report a number of issues which have
either already been fixed or have fixes underway:

« In_channel and Out_channel unsafety [1, 3]
+ MacOSX crash [21]
« Buffer unsafety [22, 15]

5 Related Work

QuickCheck [5] originally introduced property-based testing
within functional programming with combinator-based gen-
erators, properties, and test-case reduction. It has since been
ported to over 30 other programming languages, including
Quviq QuickCheck [19]—a commercial port to Erlang.

https://github.com/jmid/multicoretests

module HashtblModel = let next_state (c:cmd) (s:state) = match c with
struct | Clear -> [1]
type sut = (char, int) Hashtbl.t | Add (k,v) -> (k,v)::s
type state = (char * int) list | Remove k -> List.remove_assoc k s
type cmd = | Find _ ->'s
| Clear | Replace (k,v) -> (k,v)::(List.remove_assoc k s)
| Add of char * int | Mem _
| Remove of char | Length ->'s
| Find of char
| Replace of char * int let run (c:cmd) (h:sut) = match c with
| Mem of char | Clear -> Res (unit, Hashtbl.clear h)
| Length [@@deriving show { with_path = false }] | Add (k,v) -> Res (unit, Hashtbl.add h k v)
| Remove k -> Res (unit, Hashtbl.remove h k)
let init_sut () = Hashtbl.create ~random:false 42 | Find k -> Res (result int exn,
let cleanup (_:sut) = () protect (Hashtbl.find h) k)
| Replace (k,v) -> Res (unit, Hashtbl.replace h k v)
let arb_cmd (s:state) = | Mem k -> Res (bool, Hashtbl.mem h k)
let char = | Length -> Res (int, Hashtbl.length h)

[l
then Gen.printable
else Gen.(oneof [oneofl (List.map fst s);
printable]) in
let int = Gen.nat in
QCheck.make ~print:show_cmd
(Gen.oneof

if s =

[Gen.return Clear;

Gen.map2 (fun k v -> Add (k,v)) char int;
Gen.map (fun k -> Remove k) char;

Gen.map (fun k -> Find k) char;

Gen.map2 (fun k v -> Replace (k,v)) char int;
Gen.map (fun k -> Mem k) char;

Gen.return Length;

1

end

let

[]

init_state =

let precond (_:cmd) (_:state) = true
let postcond (c:cmd) (s:state) (res:res) =

match c,res with

| Clear, Res ((Unit,_),_)

| Add (_,_), Res ((Unit,_),_)

| Remove _, Res ((Unit,_),_) -> true

| Find k, Res ((Result (Int,Exn),_),r) ->

r = (try Ok (List.assoc k s)

with Not_found -> Error Not_found)
| Replace (_,_), Res ((Unit,_),_) -> true
| Mem k, Res ((Bool,_),r) ->r =
| Length, Res ((Int,_),r) ->r =
| _ -> false

List.length s

Figure 2: Description of a Hashtb1 test using STM.

Model-based testing was initially suggested as a method
for testing monadic code with Haskell’s QuickCheck [6].
An explicit framework was later proposed in the GAST
property-based testing library for Clean [10]. The commer-
cial Quviq QuickCheck [19] was later extended with a state-
machine model framework for testing stateful systems [2].
This approach was extended further to test parallel code for
data races [7]. This general approach for parallel testing has
since been adopted in other ports, such as Erlang’s open
source Proper [14], Haskell Hedgehog [9], ScalaCheck [20],
and Kotlin’s propCheck [17]. STM continues this adoption tra-
dition. qcstm [11] is a previous OCaml adoption, also build-
ing on QCheck. It was missing the ability to perform parallel
testing though. STM seeks to remedy this limitation.

Crowbar [8] is another QuickCheck-style testing frame-
work with combinator-based generators. In contrast to
QuickCheck, it utilizes AFL-based coverage guidance to ef-
fectively guide the generated input towards unvisited parts
of the SUT. Crowbar does not come with a state-machine
framework. Monolith [16] is a model-based testing frame-
work also building on AFL-based coverage guidance. In con-
trast to STM, Monolith’s models are oracle implementations

with operations matching the type signatures of the tested
operations. Neither Crowbar nor Monolith come with skele-
tons to perform parallel or concurrent testing. Furthermore
the AFL-based coverage-guidance underlying both Crowbar
and Monolith works best for deterministic, sequential code.

ParaFuzz [13] is another approach to fuzz test multicore
OCaml programs. It simulates parallelism in OCaml through
concurrency, enabling scheduling order to be controlled by
AFL, which helps to trigger and find scheduling-dependent
bugs. A caveat is that ParaFuzz assumes data race freedom.

Ortac can extract Monolith-based tests from a formal
specification written in Gospel, a specification language
for OCaml [12]. Gospel specifications include models, pre-
conditions, and post-conditions close to those of STM. The
extracted tests however inherit Monolith’s and AFL’s focus
on sequential code.

ArtiCheck [4] tests random combinations of OCaml calls
from type signature descriptions, similarly to Lin. Whereas
Lin and STM target impure interfaces, ArtiCheck targets per-
sistent (pure) interfaces. ArtiCheck furthermore targets se-
quential rather than parallel or concurrent tests.

List.mem_assoc k s

6 Conclusion

We have presented two libraries, Lin and STM for testing par-
allel and concurrent code for OCaml 5.0. Despite still being
under development, we believe both libraries could be help-
ful to developers of OCaml 5.0 programs.

References

(1]

[11]

[12]

Add (Failing) {In,Out_channel Linearization Tests. URL:
https://github.com/jmid/multicoretests/pull/
13.

Thomas Arts et al. “Testing Telecoms Software with
Quviq QuickCheck”. In: Proceedings of the 2006 ACM
SIGPLAN Workshop on Erlang (Erlang 2006). 2006,
pp- 2-10.

Audit Stdlib for Mutable State (Comment). URL: https:
/ / github . com / ocaml / ocaml / issues / 10960 #
issuecomment-1087660763.

Thomas Braibant, Jonathan Protzenko, and Gabriel
Scherer. “Well-Typed Generic Smart Fuzzing for APIs”.
In: ML Familiy Workshop (ML 2014). 2014. URL: https:
//hal.inria.fr/hal-01094006.

Koen Claessen and John Hughes. “QuickCheck: A
Lightweight Tool for Random Testing of Haskell Pro-
grams”. In: Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming
(ICFP 2000). 2000, pp. 268—279.

Koen Claessen and John Hughes. “Testing Monadic
Code with QuickCheck”. In: Proceedings of the 2002
ACM SIGPLAN Workshop on Haskell (Haskell 2002).
2002, pp. 65-77.

Koen Claessen et al. “Finding Race Conditions in Er-
lang with QuickCheck and PULSE”. In: Proceeding of
the 14th ACM SIGPLAN International Conference on
Functional Programming (ICEP 2009). 2009, p. 12.

Stephen Dolan and Mindy Preston. “Testing with
Crowbar”. In: OCaml Users and Developers Workshop.
2017.

Hedgehog. URL: https://github.com/hedgehogqa/
haskell-hedgehog.

Pieter W. M. Koopman and Rinus Plasmeijer. “Testing
Reactive Systems with GAST”. In: Revised Selected Pa-
pers from the Fourth Symposium on Trends in Functional
Programming (TFP 2003). Vol. 4. Trends in Functional
Programming. 2003, pp. 111-129.

Jan Midtgaard. “A Simple State-Machine Framework
for Property-Based Testing in OCaml”. In: OCaml Users
and Developers Workshop. 2020.

Nicolas Osborne and Clément Pascutto. “Leveraging
Formal Specifications to Generate Fuzzing Suites”.
In: OCaml Users and Developers Workshop. 2021. URL:
https://hal.inria.fr/hal-03328646.

[13]

[20]

Sumit Padhiyar, Adharsh Kamath, and KC Sivara-
makrishnan. “Parafuzz: Coverage-guided Property
Fuzzing for Multicore OCaml Programs”. In: OCaml
Users and Developers Workshop. 2021.

Manolis Papadakis and Konstantinos Sagonas. “A
PropEr Integration of Types and Function Specifica-
tions with Property-Based Testing”. In: Proceedings of
the 2011 ACM SIGPLAN Erlang Workshop. 2011, pp. 39—
50.

Parallel Access to Buffer Can Trigger Segfaults. URL:
https://github.com/ocaml/ocaml/issues/11279.

Frangois Pottier. “Strong Automated Testing of OCaml
Libraries”. In: Journées Francophones Des Langages
Applicatifs (JFLA 2021). Feb. 2021.

propCheck. URL: https : / / github . com/ 1Jajenl/
propCheck.

QCheck. URL: https://github.com/c-cube/qcheck.

Quviq QuickCheck. URL: http :
documentation/eqc/index.html.

/ / quviq . com /

ScalaCheck. URL: https://github.com/typelevel/
scalacheck.

Segfault on MacOSX with Trunk. URL: https :
github.com/ocaml/ocaml/issues/11226.

STM Clean-Up. URL: https : //github . com/ jmid/
multicoretests/pull/63.

Jeremy Yallop, David Sheets, and Anil Madhavapeddy.
“A modular foreign function interface”. In: Science of
Computer Programming 164 (2018), pp. 82-97. URL:
https : / / www . sciencedirect . com / science /
article/pii/S0167642317300709.

/7

https://github.com/jmid/multicoretests/pull/13
https://github.com/jmid/multicoretests/pull/13
https://github.com/ocaml/ocaml/issues/10960#issuecomment-1087660763
https://github.com/ocaml/ocaml/issues/10960#issuecomment-1087660763
https://github.com/ocaml/ocaml/issues/10960#issuecomment-1087660763
https://hal.inria.fr/hal-01094006
https://hal.inria.fr/hal-01094006
https://github.com/hedgehogqa/haskell-hedgehog
https://github.com/hedgehogqa/haskell-hedgehog
https://hal.inria.fr/hal-03328646
https://github.com/ocaml/ocaml/issues/11279
https://github.com/1Jajen1/propCheck
https://github.com/1Jajen1/propCheck
https://github.com/c-cube/qcheck
http://quviq.com/documentation/eqc/index.html
http://quviq.com/documentation/eqc/index.html
https://github.com/typelevel/scalacheck
https://github.com/typelevel/scalacheck
https://github.com/ocaml/ocaml/issues/11226
https://github.com/ocaml/ocaml/issues/11226
https://github.com/jmid/multicoretests/pull/63
https://github.com/jmid/multicoretests/pull/63
https://www.sciencedirect.com/science/article/pii/S0167642317300709
https://www.sciencedirect.com/science/article/pii/S0167642317300709

	Introduction
	The Lin library
	The STM library
	Status
	Related Work
	Conclusion

