Determine the entropy and anisotropy of images.
The operator entropy2__ creates the histogram of relative frequencies of the gray values in the input image and calculates from these frequencies the entropy and the anisotropy coefficient for each region from Regions according to the following formulae:
Entropy: 255 ---- \ Entropy = - / rel[i] * ld(rel[i]) ---- 0 Anisotropiy coefficient: k ---- \ / rel[i] * ld(rel[i]) ---- 0 Anisotropy = ----------------------------- Entropy where rel[i] histogram of relative gray value frequencies i Gray value of input image (0..255) and k smallest possible gray value with sum(rel[i]) >= 0.5
Regions (input_object) |
region(-array) -> object |
Regions where the features are to be determined. |
Image (input_object) |
image -> object : byte |
Gray value image. |
Entropy (output_control) |
real(-array) -> real |
Information content (entropy) of the gray values. | |
Assertion: (0 <= Entropy) && (Entropy <= 8) |
Anisotropy (output_control) |
real(-array) -> real |
Measure of the symmetry of gray value distribution. |
If F is the area of the region the runtime complexity is O(F + 255).
The operator entropy2__ returns the value TRUE if an image with defined gray values is entered and the parameters are correct. The behavior in case of empty input (no input images available) is set via the operator set_system(::'no_object_result',<Result>:), the behavior in case of empty region is set via set_system(::'empty_region_result',<Result>:). If necessary an exception is raised.
entropy1__, histo__, fuzzy_entropy, fuzzy_perimeter